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Abstract—Partitioned Global Address Space (PGAS) program-
ming models provide a convenient approach to implementing
complex scientific applications by providing access to a large,
globally accessible address space. Global Arrays (GA) is a popular
PGAS model that is focused on providing an efficient, productive
interface to distributed shared global arrays and is used by
several important scientific computing applications including the
NWChem computational chemistry suite. While the communica-
tion runtime of GA (named ARMCI) has been optimized for
several platforms, its architecture was fundamentally designed
for general purpose cluster computing systems with full-fledged
Operating Systems. In the recent past the largest systems in the
world have been increasingly moving towards custom lightweight
Operating Systems that are more tightly coupled with the hard-
ware architecture and its usage environment. For such platforms,
however, communication runtime architectures such as ARMCI
might not map optimally.

In this work, we describe a new communication runtime for
PGAS models such as GA, termed OSPRI (One-Sided PRIm-
itives). OSPRI presents several changes in architecture from
conventional one-sided communication systems that make it better
suited for emerging leadersip class machines. We describe the
implementation of the the IBM Blue Gene/P target for OSPRI
and demonstrate significant improvements in latency, bandwidth,
and scalability over well tuned ARMCI and GA implementations
on this system.

Keywords-Parallel Computing; One-sided Communication;
PGAS; Global Arrays; ARMCI

I. INTRODUCTION

Although the Message Passing Interface (MPI) [14] dom-
inates the landscape of parallel computing, a growing set
of applications are utilizing alternative parallel programming
frameworks including one-sided and Partitioned Global Ad-
dress Space (PGAS) models. These models provide improved
support for irregular, data-driven communication and provide
access to a large distributed shared data space that is important
to applications that operate on large data sets. One such
PGAS model is Global Arrays (GA), which provides shared
memory-like access to distributed shared array data structures
on distributed memory systems.

PGAS models have gained popularity because of the simple
and highly productive interface they provide to applications.
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Broadly speaking, they provide an interface that allows appli-
cations to asynchronously get, put or update data in a globally
shared address space. While convenient for applications, such
models pose a number of challenges to their efficient imple-
mentation, especially on large-scale leadership class systems.

Most PGAS models are built on top of an underlying
communication runtime that provides the necessary low-level
primitives (such as PUT, GET and UPDATE) while leveraging
hardware features such as RDMA to achieve good performance.
In the case of GA, this runtime system is called the Aggregate
Remote Memory Copy Interface (ARMCI). While ARMCI
has been optimized for several platforms, its architecture was
fundamentally designed for general-purpose cluster computing
systems with full-fledged operating systems.

In the recent past the largest systems in the world have
been increasingly moving towards custom lightweight operating
systems that are more tightly coupled with an increasingly
multicore hardware architecture and its usage environment.
For such platforms, communication runtime architectures such
as ARMCI present additional performance challenges. For
example, ARMCI’s communication relies on a data server
model, where each physical node utilizes a data server process
that exposes the shared memory on a node and allows other
processes to read or write data from it. While this model is rea-
sonable for general-purpose operating systems (such as Linux
or Windows) which provide complete support for multitasking
and task scheduling, these features are not common on light-
weight kernels such as the IBM compute node kernel on Blue
Gene (BG), or the compute node Linux kernel on the Cray XT
series.

Another example is the protection mechanism on systems
such as BG. The BG hardware provides electrical isolation of
user allocated node partitions. This allows a tightly coupled
light-weight OS to ignore some aspects of additional OS
protection allowing all processes on each node uniform access
to the network adapter’s direct memory access (DMA) buffers
and progress state. Thus an interrupt-driven mechanism for
incoming data can use this information to make progress more
efficiently when accessing shared data buffers.

In this work, we describe a new one-sided communica-
tion runtime for PGAS models termed OSPRI (One-Sided
PRImitives). We demonstrate OSPRI’s functionality by using
it as the communication layer for GA on a leadership class
machine and compare its performance with the optimized
ARMCI implementation. The implementation OSPRI balances
the characteristics of leadership-class machines with the simple
and easy-to-use interface provided by the PGAS models. In



this paper, we analyze several aspects within the design and
implementation of OSPRI on top of Blue Gene/P, including is-
sues related to lightweight operating systems on these machines
and their interaction with the hardware and the runtime system,
scalability limitations of synchronization mechanisms in PGAS
models on large-scale systems, and hardware contention issues
that arise due to the shared hardware on these systems. While
the work uses GA and BG/P as case studies, we believe that
the lessons learned are applicable across PGAS models, and
future large-scale computing systems.

The rest of the paper is organized as follows: Section II
provides background information on the PGAS models, GA-
ARMCI in particular. It also presents an overview of the Blue
Gene/P system. In section III, we put-forth the limitations of
the existing communication run-time architectures like ARMCI
and explain the need for OSPRI. Section IV explains how
the design of OSPRI differs from that of existing run-times
and how these design decisions help address requirements on
the leadership-class machines. We describe the device level
implementation of OSPRI for Blue Gene/P in section V and
evaluate its performance in section VI. Section VIII presents
the conclusion and future work.

II. BACKGROUND

Conventional two-sided communication techniques require
one party to perform a Send() operation and the other to per-
form a matching Recv() operation. The successful exchange
of a two-sided message implies a synchronization between the
sender and receiver as the sender must reach the send point in
their execution and the receiver must reach the receive point
in their program. In addition, the sender and receiver must
be expecting to perform the communication and agree on the
destination and source for the message, respectively.

For some applications, two-sided messaging can be re-
strictive due to irregular, data driven communication patterns;
data sharing; or computational imbalance between sender and
receiver that can lead to high latencies waiting for the message
to complete. In order to accommodate applications with these
needs, one-sided models have been developed. Models like
MPI-2 [15] provide mechanisms for asynchronous one-sided
messaging, as shown in Figure 1. One-sided messaging can
greatly help applications that exhibit irregular communication
and unbalanced computation.

Partitioned Global Address Space (PGAS) models further
build on one-sided communication by providing support for
a globally accessible shared data space that is spread across
all processors. This space grows proportional to the number of
processes, enabling applications to process large data sets while
providing convenient mechanisms for accessing shared data.
Data stored in the global address space is said to have affinity
to the node in whose memory the data resides and information
about affinity and data distribution is made available to the
programmer to allow optimizing for local access. Examples of
PGAS programming models include UPC [5], Titanium [28],
CAF [23], and GA [21]. In addition, the new HPCS languages,
Chapel [6] and X10 [7], also provide a PGAS.

Fig. 1. Example one-sided communication operation. A partitioned
global address space can be layered on top of one-sided communica-
tion by creating shared regions.

A. Global Arrays

In this work, we target the Global Arrays (GA) parallel pro-
gramming model [21], [25], [18]. GA is a popular PGAS model
that provides support for distributed, shared multidimensional
arrays and includes a variety of parallel matrix operations in-
cluding multiplication, diagonalization, and a variety of solvers.
GA has been very successful in the computational chemistry
domain and is the PGAS model used by the NWCHEM
computational chemistry suite.

The Aggregate Remote Memory Copy Interface
(ARMCI) [17], [20] is the one-sided communication subsystem
on which GA is built. ARMCI supports one-sided contiguous,
strided, and general non-contiguous get, put, and accumulate
operations in addition to a variety of atomic and collective
operations. ARMCI is intended to be implemented directly
on top of low level networking primitives to take advantage
of features like rDMA, however it is also designed to
interoperate with MPI and in most situations uses MPI
for process management, two-sided messaging, and some
collective operations. In addition to GA, ARMCI also serves
as the communication layer for Co-Array Fortran [8] and
GPSHMEM [24].

IBM systems provide LAPI (Power systems) and DCMF [12]
(Blue Gene/P) which possess primitives closely aligned to the
needs of GA/ARMCI. ARMCI was implemented for both Blue
Gene/L [4] and Blue Gene/P [11] using remote-memory-access
(RMA) operations (put/get) and active-messages (accumulate)
provided by these lower-level interfaces.

B. Blue Gene/P

BG/P is the second generation in the IBM BG family.
BG/P systems comprise individual racks that can be connected
together; each rack contains 1024 four-core nodes, for a total
of 4096 cores per rack. Blue Gene systems have a hierarchical
structure. Nodes are grouped into midplanes, which contain
512 nodes in an 8 × 8 × 8 structure. Each rack contains two
such midplanes. Large Blue Gene systems are constructed in
multiple rows of racks.

Each node on the BG/P uses a 4-core architecture, with each
core having a separate L2 cache and a semi-distributed L3
cache (shared between two cores). Each node is connected to
five different networks [26]. Two of them, 10-Gigabit Ethernet



and 1-Gigabit Ethernet with JTAG interface,1 are used for file
I/O and system management. The other three are used for
interprocess communication.
3-D Torus Network: This network is used for interprocess
point-to-point and multicast operations and connects all com-
pute nodes to form a 3-D torus (each node has six neighbors).
Each link provides a bandwidth of 425 MB/s per direction, for
a total bidirectional bandwidth of 5.1 GB/s.
Global Collective Network: This is a one-to-all network for
compute and I/O nodes used for collective communication (for
regular collectives with small amounts of data) and I/O services.
Each node has three links to this network (total of 5.1 GB/s
bidirectional bandwidth).
Global Interrupt Network: This is an extremely scalable
network specifically used for global barriers and interrupts. For
example, the global barrier latency of a 72K-node partition is
approximately 1.3µs.

The compute cores in the nodes do not handle packets on the
torus network; the DMA engine offloads most of the network
packet injecting and receiving work, enabling better overlap of
computation and communication. However, the cores directly
handle sending/receiving packets from the collective network.

The DMA engine on the BG/P maintains a buffer region,
known as the DMA FIFO, where it stores data that has been
handed over to it by the upper layers but has not yet been
reliably transmitted on the network. A process can queue data
to be sent on the network by adding it to the DMA FIFO buffer.
If this FIFO buffer is full, the process can request the hardware
for an interrupt when the DMA engine has transmitted some
data, creating more space in the FIFO. On receiving such an
interrupt, the process can refill the FIFO with more data.

III. MOTIVATION: THE NEED FOR OSPRI

The hardware and software environments of leadership class
systems are undergoing significant changes. Because of this, we
must re-think the design of runtime systems that have focused
on commodity clusters and re-target this work toward modern,
energy efficient and integrated exascale systems. In this section,
we describe various characteristics of leadership class machines
which make them fundamentally different compared to regular
cluster-based systems. For such platforms, communication run-
time architectures such as ARMCI present several mismatches.
Massive Parallelism: Systems with a few thousand cores are
very common today. Hundreds of thousands of cores are also
available on today’s largest systems and the next generation
of systems are expected to have on the order of several
million cores (e.g., the Sequoia system is expected to have 1.6
million cores [1]). At present, the greatest source of increased
performance is expected to come from increased levels of
parallelism. Thus, forward-looking software must be designed
to scale well beyond million-fold parallelism.

Architecturally, a runtime system designed for such platforms
cannot have data structures or other bookkeeping that would
scale linearly or faster with the number of processes in the
system. Thus, hierarchical or multi-level parallelism is funda-
mental for applications and runtime systems to scale to these
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systems. While GA provides a scalable communication model
for applications using groups and memory subsetting, ARMCI
does not fully expose these capabilities to GA. For example,
while a process can PUT or GET data from multiple global
arrays, ARMCI cannot distinguish the application requiring a
completion synchronization (ARMCI_ALLFENCE) on one ar-
ray vs. all the arrays. Similarly, ARMCI requires GA to provide
it with a process rank and address for any communication.
This notion requires GA to keep track of the shared address
region on each node (which scales as O(N) with the number
of nodes in the system). Leadership class machines provide
capabilities such as symmetric memory allocations where all
nodes can allocate a buffer with the same virtual address handle
allowing significantly better scalability on these systems (O(1)
as compared to O(N)), but ARMCI’s architecture does not map
well to such capabilities.
Scalable Networks: Leadership class systems such as the IBM
Blue Gene and Cray XT utilize flat (i.e. scalable) networks
which differ from switched fabrics in that they use a 3D torus
or similar topology. Although flat networks have cost benefits
compared to switched fabrics, they come at the cost of increased
network sharing between processing nodes. For example, in a
3D torus, each node has six neighbors that it directly connects
to. To reach other nodes, it has to make multiple hops.

Such networks have multiple implications on communication
runtime systems. First, these networks provide limited bisection
bandwidth. Thus, communication that is not coordinated with
other processes in the system would very easily result in net-
work congestion and consequently loss of performance, which
makes any communication that can be done in a collectively co-
ordinated manner significantly better than uncoordinated point-
to-point communication. Second, because of the high network
sharing (and contention) on these architectures, achieving high
performance requires communication to take multiple paths
simultaneously. This out-of-order communication, however, im-
plies that it gets more cumbersome for the origin process to find
out when the data transfer has completed on the remote end.
Tightly Integrated Software Stacks: Instead of general pur-
pose Operating System kernels, leadership class systems tend
to utilize customized lightweight kernels that avoid unneces-
sary noise and tend to complement the hardware provided
by the system [13]. Specialized operating systems have both
advantages and disadvantages relative to Linux, the de facto
commodity OS for parallel computing.

ARMCI’s communication relies on a data server model,
where each physical node utilizes a data server process that ex-
poses the shared memory on a node and allows other processes
to read or write data from it. For lightweight kernels such as the
IBM compute node kernel on Blue Gene (BG), or the compute
node Linux kernel on the Cray XT series, this essentially means
that one core in the system has to be dedicated to the data server
as these kernels do not allow for automatic multitasking and
task scheduling.

Similarly, lightweight kernels typically do not deal with
paging, which means that virtual address to physical address
translations are statically assigned at the machine boot time.
Further, because of the tightly integrated nature of these ma-



chines, the network DMA engine already knows this translation,
and does not require it to be cached in its memory to be
looked up during communication time. This can allow the
runtime system to significantly improve on memory registration
overheads, which essentially only performs address exchange
(which can theoretically also be avoided with symmetric mem-
ory allocations).

These fundamentally different characteristics of leadership
class machines as compared to standard cluster machines,
warrant a fundamentally different architecture for the commu-
nication runtime system, motivating the need for OSPRI.

IV. DESIGN OVERVIEW OF OSPRI
The design of OSPRI was meant to enable Global Arrays

(GA) and the scientific applications built on top of it, especially
NWChem. The most obvious way to design a runtime for
GA is to re-implement ARMCI, since it is the canonical
runtime for GA and is an essential component of the GA
tools. However, the design of OSPRI varies from ARMCI in
a several keys ways: (1) the device specific implementation
design allows greater adaptivity to exotic architectures, (2)
instead of merely optimizing for IPC (inter-process commu-
nication), thread safety is emphasized to effectively support
applications usage of hybrid programming models (such as
process+threads), (3) relaxed ordering semantics are supported
to enable better performance when the application usage per-
mits this, (4) performance oriented settings within the runtime
are exposed to enable the applications to adaptively tune the
runtime. Note that the application of OSPRI is the library using
it (e.g. GA). Additional design differences oriented towards
heterogeneous nodes and next generation interconnects will not
be discussed in this paper.

Scien&fic	  Applica&ons	  
(NWChem)	  

Data-‐structure	  Specific	  Abstrac&ons	  	  
(Global	  Arrays)	  

OSPRI	  

Core/Generic	  
Func&onality	  

Device	  Layer	  

Fig. 2. Structure of OSPRI and its
Placement in the Software Stack

The design of using a
device specific implementa-
tion for each architecture is
modeled after MPICH2 [16],
which has a hierarchical de-
sign that allows for maxi-
mum code reuse but at the
same time permits highly
optimized architecture spe-
cific functionality when it is
justified. In the case of Blue
Gene/P, the source branch-
ing within MPICH2 is rel-
atively high level due to the close mapping of DCMF to
MPI calls and the performance benefit from utilizing this
close mapping. The OSPRI design, hence, is hierarchical with
the core layer/functionality separated from the device specific
layer/functionality. Of the several design considerations in
defining a one-sided communication library, the three most
crucial ones are: (1) the data server (or the communication
helper thread), (2) message ordering semantics, and, (3) thread
safety and hybrid programming support.

A. Aptness of the Data Server

The ARMCI Data Server (DS) serves many functions in-
cluding [27]: (1) implementing the accumulate operation, (2)

pack/unpacking non-contiguous messages, and (3) read-modify-
write (RMW) and lock/unlock. The OSPRI design deliberately
excludes DS from the core functionality of the library. There
are several reasons for this, these reasons are explained in the
context of each of the DS functions listed above.
Accumulate Operation: Element-wise atomic operations are
supported by most networks today. However, no architecture
supports general purpose floating point accumulate in hardware,
hence it is always necessary for either the sender or receiver to
perform this computation in the CPU. Because sender-computes
requires a round trip transfer, it achieves less than half the
bandwidth of a receiver-computes implementation, hence we
consider only the latter to be viable for Global Arrays. The
sender-computes approach was considered in Ref. [19]. There
are two common approaches for invoking remote computation:
interrupts and polling. Which of these is better depends on
the cost of interrupts versus a dedicated polling thread. Within
Linux, interrupts are expensive but oversubscription is well
supported. On the other hand, lightweight kernels can provide
very efficient interrupts, but, as on Blue Gene’s CNK, over-
subscription may be impossible and may require a dedicated
core.
Pack/Unpack Support: Another important role of the DS
to pack and unpack non-contiguous buffers. This role is less
important for networks which allow for high injection rate
and support non-contiguous transfer in the low level API.
For example, the DMAPP API [2] provided on the Cray
XE6 system supports contiguous, strided and indexed Put and
Get operations. We expect that substantial hardware support
for these operations will render pack/unpack optimizations
unnecessary. While Blue Gene/P does not provide any low level
hardware or software support for non-contiguous transfer, it is
still unnecessary to use a DS because remote unpacking can be
implemented within the remote callback in the same manner as
floating point remote accumulate. Given the increasing preva-
lence of both low level support for non-contiguous messages as
well as active messages in modern systems, a persistent thread
or process such as the DS as a core functionality to handle
these features is unnecessary.
RMW, Lock/Unlock Operations: Finally, the DS is used for
remote atomic operations such as read-modify-write (ARMCI
implements only fetch-and-add and swap) and lock/unlock.
Once again, increased support for these operations in hardware
(e.g. Cray XE6 and IBM PERCS) or through efficient active
messages (e.g. Blue Gene/P) makes it unnecessary to imple-
ment a generic version through the DS.

Since there are still many scenarios in which one or more
communication helper threads (CHTs) improves performance,
within OSPRI, the existence and role of CHT(s) is device
specific. No core functionality/operations within OSPRI can
assume the existence of a CHT and it is desired that device
level functionality be CHT agnostic.

B. Message Ordering Semantics
With respect to ordering semantics within OSPRI, three

levels of support can be provided. ARMCI provides location
ordered semantics, meaning that not only sequential overlap-
ping Puts to the same target will behave as if they were



remote stores, but Accumulate to remote memory followed by
a Get from the same memory will provide the desired result.
We consider this ordering to be strict in the pairwise sense.
Although full implementation of ARMCI on top of OSPRI will
utilize SO for all its blocking operation, the GA implementation
on top of OSPRI will not. This is because SO is unnecessary
for a broad class of usage patterns of GA.

In fact, if we go one more level up in the software stack (see
Figure 2), NWChem code does almost all of its GA Put, Get
and Accumulate calls within well defined epochs bounded by
calls to an all encompassing barrier known as GA_Sync, which
combines the effect of MPI_Barrier with remote completion
of all outstanding communication operations. Within any given
epoch, it can be observed throughout NWChem that only one
type of one-sided call is used for a given global array and
that most of these calls are blocking. In a blocking Get call,
remote completion and local completion are one in the same,
hence there is no ordering issue whatsoever with other Get
calls. Puts must be ordered within themselves for consistency,
whereas Accumulate, which is commutative-associative for all
operations defined in the GA API, do not need to be ordered.

From the aforementioned breakdown of GA usage patterns
and GA communication within NWChem, it is clear that we
need only to enforce partial ordering within an epoch where
only one type of one-sided call will be made to a given section
of remote memory. To maintain the equivalence between Put
and store, those operations must be ordered with respect to one
another, but not with respect to Get or Accumulate operations.
Within the partial ordering (PO) model, conflicting accesses
to remote memory with, for example, Put and Acc, shall be
considered undefined. Pointwise ordering between Put and Acc
can of course still be achieved with an explicit fence/flush to the
appropriate target. In the PO model, performance benefits will
be realized on many platforms because it is no longer necessary
to flush the target before every Put and Accumulate operation.

Finally, we consider the unordered (UO) model, within which
there is no guarantee of ordering for any operations except via
the use of an explicit fence/flush operation. This is the easiest
model to provide. Although this may be beneficial on some
networks, we find that it is not particularly useful on Blue
Gene/P since the only means for enforcing remote completion
of Put calls is to send a subsequent zero byte Get (in practice
DCMF does this internally) down the same path of the network.
Alternatively, one can use dynamic routing with an active
message Put (i.e. using DCMF_Send) but this then requires
remote agency to issue the completion callback, which pre-
cludes this mode of operation if both a communication helper
thread (CHT) and interrupts are to be considered optional.

No effort is required to enforce SO for blocking Gets. Just
as in ARMCI, ordering of non-blocking operations in OSPRI
cannot be assumed within an model.

C. Thread Safety and Hybrid Programming

Because of the growing popularity of hybrid programming
models and improved compiler support for OpenMP, we con-
sidered it more pertinent to support a thread safe (in the
sense of MPI_THREAD_MULTIPLE) API than any specific

shared memory optimizations. It is our contention that intra-
node performance benefits are better realized within a hybrid
programming model in conjunction with thread safe OSPRI
than through a process model and associated shared memory
optimizations. As the number of cores per node increases, it will
be increasingly challenging to run in a model that requires one
process per core. For a runtime to keep up with all intranode
communication is going to become a significant bottleneck
due to the memory bandwidth limitations and deep memory
hierarchies. Hence the OSPRI design choice of being inherently
thread safe is not only more suited for modern programming
models but is also carries the ability to scale to dozens of cores
per node. Although specific shared memory optimizations are
still useful on some architectures today, on Blue Gene/P, it was
determined early in the development of OSPRI that the DMA
was faster than memcpy for intranode transfers larger than 32
KB.

V. DEVICE LAYER DESIGN FOR BLUE GENE/P
The design of OSPRI gives device implementers the freedom

to exploit features provided by the underlying system and
address any system specific limitations, effectively. In this
section we discuss some of the major issues on implementing
a one-sided library on the Blue Gene/P system and how these
are addressed in OSPRI.

A. True Passive Progress

One-sided communication runtimes are aimed at addressing
the requirements of applications/libraries with highly irregu-
lar communication patterns. The performance of such appli-
cations/libraries largely depends on the runtimes’ ability to
achieve true passive progress. Blue Gene/P provides a powerful
Direct Memory Access (DMA) engine and the Deep Computing
Messaging Framework (DCMF) exploits this through truly
one-sided communication calls (DCMF Put and DCMF Get).
However, operations like accumulate, read-modify-write and
remote locks are neither supported in the DMA nor provided in
the DCMF. These operations have to be executed in callbacks
on the remote process. The callbacks are executed either when
the remote process calls progress (DCMF Messager advance)
explicitly or through interrupts. The operating system (CNK)
on the Blue Gene/P stores floating point registers as part of
the context when an interrupts happens. This leads to flushing
a large portion of the L1 Cache and will significantly impact
the performance of applications with high data locality. On the
other hand, remote process driven progress does not provide
the true passive nature desired in a one-sided library.

Blue Gene/P, which has four cores per node, operates in three
modes: SMP mode, where only one process runs per node but
can launch threads to use other cores, DUAL mode, where
two process are launched per node and node-level resources
are equally split between them and finally, the VN mode
where a process is launched on each core and has a fourth
of the node resources. Due to limited memory available on
these nodes, many of our target applications, NWChem for
example, does not run well in VN mode and its scalability is
more limited due to the growth of the local memory footprint
with job size. At the same time, these applications are, for



the most part, single threaded and are limited in their overall
performance when run in SMP or DUAL mode. However, it
has be determined through exhaustive performance analysis that
NWChem is so performance intensive at scale that devoting
one or more cores to communication (i.e. to run a CHT)
reduces the time-to-solution, which is the only performance
metric relevant that scientists care about. Taking this into
consideration, we use a CHT in our design for BG/P. The
CHT is a lightweight entity which polls for incoming DCMF
active messages by calling DCMF Messager advance, making
progress on incoming messages.

Thread safety is one of the key design goals of OSPRI and
the use of a CHT entails the need for locking inside the library
even when the application is single threaded. Though DCMF
provides Critical Section functions that can be used to achieve
this, we explore the use of BGP Atomics to minimize the
locking overhead.

B. Efficient Implementation of Non-Contiguous Transfers

DCMF provides a relatively user friendly API for contiguous
transfers that exploit the capabilities of the DMA engine and
for general purpose active messages. However, it stops short of
implementing non-contiguous functions or read-modify-write
like the closely related LAPI API for IBM Power systems.
The onus falls on the communication runtime to efficiently
implement these operations over the contiguous operations. On
the other hand, Global Arrays operates on arrays of two or more
dimensions and transfer of sub-matrices (strided) is the most
common kind of communication. Hence, effectiveness of non-
contiguous transfers is the key to the performance and scaling
of GA and its applications. GA depends on the underlying
runtime for efficient implementation of these transfers.

A direct way of implementing non-contiguous transfers is to
use multiple Put/Get calls, thus achieving true passive progress
through use of the DMA. Apart from the overhead of posting
multiple messages to the network, such a scheme incurs as
significant penalty on systems like Blue Gene/P, where network
resources are limited. In our implementation, we reduce the
number of messages posted by using packing. The presence
of CHT ensures passive unpacking and processing of these
messages on the remote side. We maintain buffer pools to
avoid the overhead of allocating buffers for each message and
these provide us a source side flow control mechanism which
is important, especially on a memory limited system like Blue
Gene/P. When the buffer pool limit is reached, we stall, and
hit on progress until an earlier operation has completed and a
buffer has been freed. Such flow control is hard to achieve on
the receiver side as we cannot make calls to DCMF advance
from inside callbacks, since this would create the possibility
of deadlock. The raw network bandwidth on Blue Gene/P
is limited when compared to other commodity networks like
InfiniBand. Buffering helps show better bandwidth performance
to the application as the blocking communication operations
can return as soon as the data has been copied over to a buffer.

C. Scalable Synchronization

In Global Arrays, all blocking communication calls or non-
blocking calls followed by a wait return as soon as they

are complete locally i.e. when the local buffers are ready
for reuse. A Fence (one-to-many) or a Sync (collective) is
issued to ensure the remote completion of these operations.
As Sync is very frequently in GA applications like NWChem,
its implementation has a noticeable impact on the performance
and scalability of the application. OSPRI provides Flush and
Sync operations over which the aforementioned GA operations
can be mapped onto. The nature of remote completion differs
among the different communication operations provided by
DCMF — Put, Get and Send — and this has to be taken into
consideration while designing the Flush and Sync operations.

The Get operation only provides a callback at the calling
process. When this callback is complete, the requested data is
available in the local buffer and hence the operation is com-
plete and does not require any handling during the following
Flush/Sync operation. Put operations allow for two callbacks,
one each for local and remote completion. A GA blocking
Put call can return after the local callback occurs. Remote
completion of the Put operation can be ensured but making
use of the remote completion callback (ACK) or by flushing
the network with a dummy Put operation to the target during
the Flush/Sync, which flushes all the earlier puts. One has
to consider the consistency feature used in the DCMF calls
while using a put operation to flush earlier puts. The second
approach works when sequential consistency is used, where
the routing is static. However, when relaxed consistency (can
use dynamic routing) is used, one has to ensure completion
of each put operation independently through callbacks. In the
current version of DCMF, however, all consistency schemes
use static routing for Put because ensuring remote completion
using only the DMA is only possible via a low level flush
mechanism, hence DCMF internally knows that it must resort
to static routing to provide a remote completion callback, even
if dynamic routing is requested. A dynamically routed Put
operation can be implemented using Send but this will, of
course, require remote agency to process the remote ACK and
send a confirmation packet back to the sender.

DCMF does not provide native accumulate operations and
hence they are implemented using Send operations with the
accumulate being done in a callback on the remote side. Remote
completion of an accumulate operation requires the completion
of computation at the remote side. Under sequential consis-
tency, DCMF ensures that messages between a pair of processes
are ordered. Further, only one callback can be active at a
process at a give point of time. Thus, a dummy send message
with a acknowledgment, during the synchronization phase, can
be used to ensure the remote completion of all the earlier send
messages. The ARMCI implementation uses a similar scheme
to ensure remote completions. We considered the use of remote
completion callbacks for every remote Accumulate operation,
which would have eliminated the need to flush these messages
altogether, but it was determined from detailed benchmarking
and consideration of the communication patterns generated
by NWChem, that the overhead, both in terms of local data
to bookkeep the remote ACKs and the increased number of
packets on the network generated by the target, was too steep.

As discussed above, the cost of remote completion differs



between Get, Put and Accumulate operations. Hence, in our
design, we keep track of the kind of messages issued to a
target and flush the connection accordingly. One more thing to
note is that a flushing Send operation also ensures the remote
completion of all the Put operations. In summary, we choose
from three actions to flush a target, No-Op, Flush-Put with ACK
callback and Flush-Send with ACK, based upon the record
of outstanding operations of each kind (of course, we do not
bookkeep any information about Gets for obvious reasons noted
previously).

VI. EXPERIMENTAL EVALUATION

The performance of OSPRI has been evaluated on the Blue
Gene/P architecture in three ways: (1) OSPRI versus DCMF, to
measure software overhead, (2) OSPRI versus ARMCI, for an
apples-to-apples evaluation of important one-sided primitives
(Put, Get, Acc, Flush) (3) GA benchmarks run using both
ARMCI and the OSPRI, which is a drop-in replacement for
ARMCI through an identical implementation of all ARMCI
functions called by GA. All performance tests were run in SMP
mode since there is no additional information to be gleaned
from execution in other modes since neither ARMCI nor OSPRI
optimizes for this case and we cannot compare thread-safe
performance since ARMCI is not thread-safe. Comparison to
Berkeley’s GASNet communication system was not performed
because it was previously demonstrated that it achieves the
same low overhead as OSPRI for Put and Get operations on
Blue Gene/P [22], while the semantics of GASNet active-
messages make them inappropriate to implement ARMCI-style
accumulate.

A. Library Overhead in OSPRI

In this section we compare contiguous Put latency in OSPRI
with that in DCMF and other one-sided libraries. The amount
of overhead each library incurs varies with its various progress
and locking modes. We present three modes of operation of
OSPRI: (1) helper thread disabled (OSPRI-NoCHT) (2) helper
thread enabled and BGP Atomics used for locking to ensure
thread-safety (OSPRI-Atomics) and (3) helper thread enabled
and DCMF Critical-Section used for thread-safety (OSPRI-
CS). Figure 3(L) compares the local completion latency for
OSPRI Put with DCMF Put. We see that OSPRI has a 0.4
µsec software overhead relative to DCMF. When the CHT
is enabled, lock contention between the main thread and the
helper thread incurs some overhead. We see that use of atomics
for locking causes lower overhead when compared to using
the DCMF Critical Section. However, this only works when
OSPRI is the exclusive user of DCMF since only OSPRI can
see the Atomic locks used therein, whereas the other clients of
DCMF — e.g. MPI or GASNet — will observe DCMF Critical
Sections and not make unsafe calls to DCMF simultaneous
with OSPRI, provided they are operating in a thread-safe mode.
Alternatively, one could explicitly serialize all calls to MPI from
within GA using the Atomic locks used by OSPRI, or replace
all calls to MPI with calls to DCMF, but this still does not
permit GA to be used alongside MPI, which is too important
a functional requirement to justify the decreased latency in
OSPRI from the use of Atomic locks. All GA results reported

herein use DCMF Critical Section rather than Atomic locks to
ensure thread-safety.

Figure 3(R) compares the Put latencies in OSPRI with that in
ARMCI and MPI. The local and remote completion semantics
in OSPRI match that in ARMCI. MPI-2 does not separate
local from remote completions. So, we measure the remote
completion latency in the passive synchronization mode. We
see that OSPRI performs notably better than the both of the
other libraries.

B. Global Arrays performance over ARMCI and OSPRI

Remote (inter-process/inter-node) Operations:
In this section, we compare the performance of GA built

with OSPRI and ARMCI. For the purpose of obtaining a
drop-in replacement for ARMCI which requires only relinking
for use, we have created a lightweight ARMCI wrapper so
that no modification of GA source was necessary to run tests
thereof. In the future, GA will be modified to use OSPRI
directly and exploit its unique API features, which we chose
not to document in detail here. The performance of remote GA
operations is evaluated with one process operating on an array
that is distributed across multiple other processes. We have used
the standard GA performance benchmarks on four processes
where each process operates on a matrix of 1024x1024 doubles.

We see that OSPRI reduces the small chunk latency by
more than 50% in the case of Put and Accumulate. The Get
latency is reduced by 41%. Most of the improvement observed
comes from packing, which reduces the number of operations
posted to the network. The rest is reduced software overhead
because our design is more streamlined by virtue of the device-
implementation design. Although OSPRI implements a buffer-
pool which allows blocking transfers to return after data is
copied into a buffer rather than after local completion, this
feature is disabled during benchmarks to show the network
performance rather than the speed of local copies. When the
buffer-pool is utilized, the CHT handles the communication
operations and frees buffers as they are transferred to the
network. This is known as handoff mode and it is a runtime
configurable setting, as is the size of buffer pools for Get,
Put and Accumulate, which are determined separately. The
improved performance of OSPRI versus ARMCI for the GA
performance benchmark is shown in Figures 4 and 5.
Local (intra-process) Operations:

Global Arrays generates a significant amount of intra-process
transfer operations [10] since it is assumed that the un-
derlying one-sided runtime optimizes these appropriately for
the system. As noted previously NIC-bypass is not always
optimal and on Blue Gene/P, we find that the using DCMF
for intra-process is faster than copy for large buffers since
it can exploit the DMA and data need not pass through the
L1 cache. However, this behavior changes when the DMA
is busy with network operations. In that case, memory copy
will preform better than the DMA By default, OSPRI uses
memory copies (or direct-access in the case of Accumulate) for
all intra-process communication. However we have a runtime-
configurable option to use DMA operations if it is known to
the user that large intra-process transfers will be generated by
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Num. Processes/Nodes 64 128 256 512
ARMCI 588.99 1208.49 2540.76 4919.48
OSPRI 161.29 322.00 641.98 1392.46

TABLE I
LATENCY (USEC) OF ALLFENCE AT PROCESS 0 AFTER
COMPLETING 8-BYTE PUTS TO EVERY OTHER PROCESS

GA in the absence of significant inter-node communication.
The numbers presented in 6(L) compares the performance
of local GA operations on a 2D array using ARMCI and
OSPRI. We see that for small and medium Put/Get messages
the OSPRI memory copy design performs better than ARMCI.
As expected, the DMA copies perform better.for very large
messages, which is why ARMCI, which does uses DCMF for
all local operations, is superior in this regime. Figure 6(R)
shows the performance of Local GA Accumulate operations.
For Accumulate, there is no advantage of the DMA since
the overhead of doing numerical operations within an active-
message callback is prohibitive. OSPRI performs significantly
better throughout across the message range using direct access.

C. Evaluation of scalable synchronization

In this section we compare the performance of
AllFence/Flush group(WORLD) operation which ensures
remote completion of all prior operations. As described earlier,
OSPRI categorically flushes the connections based on the
operations issued on them. Table I shows how the use of single
bytes Put + ACK Callback to flush Puts in OSPRI performs
compared to the generic use of Send + ACK in ARMCI. We
see the quantitative impact of this optimization increases with
scale.

D. Performance effects of OSPRI ordering semantics

The final evaluation of OSPRI is to measure the performance
benefit which can be realized with relaxed ordering semantics
relative to the strict ordering required for location consistency.
As we have not observed a single use case of Global Arrays
which requires strict ordering in the one-sided runtime, the
contention here is that the improved performance of the partial
ordering model realized in the following test is immediately
transferable to GA applications such as NWChem.
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Figure 7 shows that, for messages as large as 4 KiB, the
latency is noticeably greater for Get when using SO versus PO.
The overhead comes from the need to flush outstanding Put or
Accumulate to the same target, even if the operations are acting
on non-overlapping buffers. Of course, one could keep track not
only of targets to which Put or Acc messages are outstanding,
but also the regions of memory upon which they acted, which,
in a communication-intensive application such as NWChem, is
either significant memory overhead if stored in a dense fashion
or significant processing overhead if stored sparsely.

VII. RELATED WORK

Several one-sided communication substrates have been de-
veloped in the context of different higher-level projects.
ARMCI [17] and GASNet [5] both support PGAS models;
ARMCI supports both GA [21] and Co-Array Fortran [8] while
GASNet supports UPC [5], Titanium [28] and Chapel [6].
GASNet is also used as the communication layer for the new
Chapel high productivity programming language [6].

Shmem [3] is a well known one-sided GAS programming
model and an implementation called GPSHMEM [24] has been
layered on top of ARMCI. Although Shmem is a successful
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GAS model, its scalability is limited by the virtual address
space of a single node since data must be mapped to sym-
metric addresses on all nodes. PGAS models do not have this
limitation since the size of the address space grows proportional
to the number of processes in the computation.

The MPI-2 standard [15] has extended MPI’s popular two-
sided messaging with one-sided messaging, however restric-
tions on data access make it unsuitable for supporting a PGAS
model. MPI-3 [9] seeks to remedy these limitations with new
one-sided primitives.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed OSPRI, a new one-sided
communication runtime for Global Arrays. The nature and
demands of modern leadership class systems was discussed
and it was explained how the designs of current runtimes like
ARMCI fall short in addressing them. OSPRI has been targeted
to overcome these limitations in a modular and scalable fashion.
Our work also presents the device-level implementation of
OSPRI on Blue Gene/P and shows how the designs provide
near-network performance and outperforms ARMCI as the
one-sided runtime system for Global Arrays. This is due to
(1) optimizations for noncontiguous operations, (2) better use
of CPU and network resources by better optimizing for the
architecture, and (3) reduced software overhead due to the
device-specific implementation, which shortens the call path
relative to a more generic implementation. In the future, Global
Arrays will be implemented directly on top of OSPRI in order
to take advantage of unique API calls not described here,
dynamic routing (which requires more complex synchronization
mechanisms) and other hardware optimizations, such as com-
munication on multiple links simultaneously for GA operations
which generate communication for multiple targets.

Work towards an OSPRI implementation on other leadership-
class systems (Cray XE6, IBM PERCS/Blue Waters and IBM
Blue Gene/Q) has already begun and will be presented in
the future. It is also worth noting the OSPRI API includes
features designed to support heterogeneous nodes, such as those
including GPUs, and an implementation to support Global
Arrays for such systems, regardless of the network, is planned.
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